395 research outputs found

    A Two-Gene Signature, SKI and SLAMF1, Predicts Time-to-Treatment in Previously Untreated Patients with Chronic Lymphocytic Leukemia

    Get PDF
    We developed and validated a two-gene signature that predicts prognosis in previously-untreated chronic lymphocytic leukemia (CLL) patients. Using a 65 sample training set, from a cohort of 131 patients, we identified the best clinical models to predict time-to-treatment (TTT) and overall survival (OS). To identify individual genes or combinations in the training set with expression related to prognosis, we cross-validated univariate and multivariate models to predict TTT. We identified four gene sets (5, 6, 12, or 13 genes) to construct multivariate prognostic models. By optimizing each gene set on the training set, we constructed 11 models to predict the time from diagnosis to treatment. Each model also predicted OS and added value to the best clinical models. To determine which contributed the most value when added to clinical variables, we applied the Akaike Information Criterion. Two genes were consistently retained in the models with clinical variables: SKI (v-SKI avian sarcoma viral oncogene homolog) and SLAMF1 (signaling lymphocytic activation molecule family member 1; CD150). We optimized a two-gene model and validated it on an independent test set of 66 samples. This two-gene model predicted prognosis better on the test set than any of the known predictors, including ZAP70 and serum β2-microglobulin

    RPPA-based proteomics recognizes distinct epigenetic signatures in chronic lymphocytic leukemia with clinical consequences

    Get PDF
    The chronic lymphocytic leukemia (CLL) armamentarium has evolved significantly, with novel therapies that inhibit Bruton Tyrosine Kinase, PI3K delta and/or the BCL2 protein improving outcomes. Still, the clinical course of CLL patients is highly variable and most previously recognized prognostic features lack the capacity to predict response to modern treatments indicating the need for new prognostic markers. In this study, we identified four epigenetically distinct proteomic signatures of a large cohort of CLL and related diseases derived samples (n = 871) using reverse phase protein array technology. These signatures are associated with clinical features including age, cytogenetic abnormalities [trisomy 12, del(13q) and del(17p)], immunoglobulin heavy-chain locus (IGHV) mutational load, ZAP-70 status, Binet and Rai staging as well as with the outcome measures of time to treatment and overall survival. Protein signature membership was identified as predictive marker for overall survival regardless of other clinical features. Among the analyzed epigenetic proteins, EZH2, HDAC6, and loss of H3K27me3 levels were the most independently associated with poor survival. These findings demonstrate that proteomic based epigenetic biomarkers can be used to better classify CLL patients and provide therapeutic guidance

    Initial Report of a Phase I Study of LY2510924, Idarubicin, and Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia

    Get PDF
    Background: The CXCR4/SDF-1α axis plays a vital role in the retention of stem cells within the bone marrow and downstream activation of cell survival signaling pathways. LY2510924, a second generation CXCR4, showed significant anti-leukemia activity in a murine AML model.Methods: We conducted a phase I study to determine the safety and toxicity of LY2510924, idarubicin and cytarabine (IA) combination therapy in relapsed/refractory (R/R) AML. Eligible patients were 18–70 years of age receiving up to salvage 3 therapy. A peripheral blood absolute blast count of < 20,000/μL was required for inclusion. LY2510924 was administered daily for 7 days followed by IA from day 8. Two dose escalation levels (10 and 20 mg) were evaluated, with a plan to enroll up to 12 patients in the phase I portion.Results: The median age of the enrolled patients (n = 11) was 55 years (range, 19–70). Median number of prior therapies was 1 (1–3). Six and five patients were treated at dose-levels “0” (10 mg) and “1” (20 mg), respectively. Only one patient experiencing a dose limiting toxicity (grade 3 rash and myelosuppression). Three and one complete responses were observed at dose-levels “0” and “1,” respectively; the overall response rate (ORR) was 36% (4 of 11 patients). A ≥ 50% decrease in CXCR4 mean fluorescence intensity was observed in 4 of 9 patients by flow cytometry, indicating incomplete suppression of CXCR4-receptor occupancy.Conclusions: The combination of LY2510924 with IA is safe in R/R AML. Dose-escalation to a 30 mg LY2510924 dose is planned to achieve complete blockade of CXCR4 receptor occupancy, followed by expansion phase at the recommended phase 2 dose-level

    The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells

    Get PDF
    CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3K\u3b4) inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC). We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNF\u3b1-induced VCAM-1 (CD106) expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d) resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood

    Gene Therapy: Charting a Future Course—Summary of a National Institutes of Health Workshop, April 12, 2013

    Get PDF
    Recently, the gene therapy field has begun to experience clinical successes in a number of different diseases using various approaches and vectors. The workshop Gene Therapy: Charting a Future Course, sponsored by the National Institutes of Health (NIH) Office of Biotechnology Activities, brought together early and mid-career researchers to discuss the key scientific challenges and opportunities, ethical and communication issues, and NIH and foundation resources available to facilitate further clinical advances
    corecore